
EEE 324 - DIGITAL DESIGN

 1

EXPERIMENT 1

LOGIC GATES AND BOOLEAN ALGEBRA

1. OBJECTIVE
Gain experience in truth table and Boolean algebra.

2. THEORY

2.1 AND GATE

AND gate implements the Boolean AND function where the output only is logical 1

when all inputs are logical 1. The standard symbol and the truth table for an AND

gate with two inputs is given below.

The Boolean expression for the AND gate is F = A.B

2.2 OR GATE

OR gate implements the Boolean OR function where the output is logical 1 when at

least one input is logical 1. The standard symbol and the truth table for an OR gate

with two inputs is given below.

The Boolean expression for the OR gate is F A B .

A B F

0 0 0

0 1 0

1 0 0

1 1 1

A B F

0 0 0

0 1 1

1 0 1

1 1 1

Table 1 Truth table of

AND Gate

Figure 1 AND Gate

symbol

Figure 2 OR Gate
Table 2 Truth table of OR

Gate

A

B
F

A

B
F

EEE 324 - DIGITAL DESIGN

 2

2.3 NOT GATE

NOT gate implements the Boolean NOT function where the output is the inverse of

the input. The standard symbol and the truth table for the NOT gate is given below.

The Boolean expression for the NOT gate is F A

From these three basic logical gates it’s to possible implement any Boolean

expression into hardware.

2.4 NAND GATE

NAND gate is an AND gate followed by a NOT gate. The output is logical 1 when

one of the inputs is logical 0. The standard symbol and the truth table for the NAND

gate is given below.

The Boolean expression for the NAND gate is F A B .

A F

0 1

1 0

A B F

0 0 1

0 1 1

1 0 1

1 1 0

Figure 3 NOT Gate Table 3 Truth table of NOT

Gate

A F

A

B
F

Figure 4 NAND Gate Table 4 Truth table of

NAND Gate

EEE 324 - DIGITAL DESIGN

 3

2.5 NOR GATE

NOR is a combination of an OR followed by a NOT gate. The output is logical 1

when all of the inputs are logical 0.The standard symbol and the truth table for the

NOR gate is given below.

The Boolean expression for the NOR gate is R A B .

2.6 TRUTH TABLE

A truth table is a list of all the possible inputs and the corresponding outputs for a

given system. The amount of possible inputs is determined by the amount of input

variables. This value can be obtained by the formula 2
n
.

Example: Determine the truth table for: Y=ABC+A'BC.

The indicated Boolean equation would produce a high output when A=1,B=1,C=1 or

A=0.B=1,C=1 All other input combinations would produce a low output. The truth

table for the expression is shown below.

Truth Table

A B C Y

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

A B F

0 0 1

0 1 0

1 0 0

1 1 0

Figure 5 NAND Gate Table 5 Truth table of

NAND Gate

A

B
F

Table 6 Truth Table

EEE 324 - DIGITAL DESIGN

 4

2.7 BUILDING A CIRCUIT

In order to build a circuit from a truth table, we must first determine the Boolean

expression for that particular truth table. Then the circuit can be constructed from

multiple AND gates whose outputs all tie into one multiple input OR gate.

3. PRELIMINARY WORK

Design a circuit that has the truth table shown below.

Truth Table

A B C F

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

EXPERIMENTAL PROCEDURE

Equation.1 F = A+BC+AC

Equation.2 F = A+AB

1) Complete the Truth Table of equation.1

2) Implement equation 1 by using minimum amount of logic gates.

3) Repeat step 2 for equation 2.

Equipment List:

1) 74LS32 TTL OR GATE IC

2) 74LS08 TTL AND GATE IC

3) Standard set equipments

Table 7: Truth Table for preliminary work

 EEE 324 - DIGITAL DESIGN

 1

EXPERIMENT 2

COMBINATIONAL LOGIC CIRCUITS AND KARNOUGH MAP

1. OBJECTIVE

To gain experience in designing logic circuits and Karnough map

2. THEORY

Simplification of logic circuits is a responsibility of the designer. Simpler circuits are

generally more economic and more reliable.

2.1 SUM OF PRODUCT FORM (SOP)

The sum of product form of a logic circuit output looks like the following examples:

FHEFDCBAHFEDCBAF

DBADBADBAF

),,,,,,(

),,(

Logic equations may also be simplified using Boolean algebra or Karnough map.

Both types of simplification will be covered the logic equations shown in the above

examples are called “minterm” expressions.

Minterm expressions are logical equations where logical sum operator separates the

logical product terms. Minterm expressions are also called sum of product

expressions.

2.2 DESIGNING COMBINATIONAL CIRCUIT

Logic design begins with a problem statement. The problem statement is analyzed

and translated into logic variable inputs. A truth table is then constructed to show

when a logic one output is to be produced. Next a SOP (minterm) logic equation is

then produced. Then a circuit is drawn from the SOP logic equation.

2.3 THE KARNOUGH MAP

A Karnough map or K-map technique is a graphical device to simplify logic

equations or the output of truth tables following a simple orderly process.

A K-map like a truth table displays the relationship between input variables and the

desired or true output of logic expression on the truth table.

 EEE 324 - DIGITAL DESIGN

 2

EXAMPLE: Simplify the logical equation by using K-map

CABCBACBACBACBAF),,(

Truth Table

A B C F

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 0

After using K-map Simplified logical expression is BACAF

A B C

F

Table 1. Truth table of logical function

Fig 3.1 K-map of the function

Fig 1. Logic Circuit

 EEE 324 - DIGITAL DESIGN

 3

3. PRELIMINARY WORK

An alarm is to be used in automated ink bottling plant.

A conveyer belt carries the empty inkbottles past the filling spout. The alarm is to

sound if any of the following conditions occur:

A) If there is no ink and bottle in the same time

B) When the user push the emergency button

I = Ink in the tank

B = Bottles on the conveyer belt

E = Emergency button

1) Complete the Truth Table of problem

2) Simplify the logical expression of the problem by using K-map

4. EXPERIMENTAL PROCEDURE

Implement simplified logical expression in preliminary work using logic gates

Equipment List:

1) 74LS32 TTL OR GATE IC

2) 74LS08 TTL AND GATE IC

3) 74LS04 TTL NOT GATE IC

4) Standard set equipments

E I B Alarm

 EEE 324 - DIGITAL DESIGN

 1

EXPERIMENT 3

HALF ADDER AND FULL ADDER

1. OBJECTIVE

To gain experience in logic circuits and Adders.

2. THEORY

2.1 HALF ADDER
A half adder is a digital logic circuit with two input terminals and two output

terminals. The output terminals are called the sum and carry outputs. The sum output

of a half-adder circuit is the exclusive OR (XOR) function of the two inputs. That is,

the sum output is 0 when the inputs are the same and 1 when they are different. The

carry output is the AND function of the two inputs. It is 1 only when both inputs are

1.

A

B
S

C

 2.2 FULL ADDER

Just like a half-adder, the full adder is also a digital logic circuit. The full adder

differs from the half adder in that the full adders consider carry bits from previous

stages.

A

B

Ci

S

C

Figure 1. Implementation of a half-adder.

Figure 2. Implementation of a Full-adder.

 EEE 324 - DIGITAL DESIGN

 2

Suppose that we wish to add two single bit binary numbers A and B. In doing this we

have to consider two things:

 What is the sum of the two numbers within the column?

 Do we need to carry a number into the next column?

It is helpful to construct a truth table for these two operations.

For the sum of the numbers in the column itself the truth table is as shown on the left

below. The answer within the column is 1 if only one of A or B is 1 but is zero if

neither or both of A and B are

.

Table1 is the truth table of an XOR gate. Thus if A and B form the two inputs of an

XOR gate, the output will be the correct answer for the sum of the two numbers

within the same column. The truth table that says whether a 1 need to be carried into

the next column is as below. Clearly this only needs to happen if both A and B are 1.

The truth table therefore is that of an AND gate. An AND gate can be used to carry a

bit into the next column if required

A suitable logic circuit, which will perform this simple addition of two single bit

numbers, is shown below. The circuit is known as a half-adder. This is because it can

only be used to add the LSB of two numbers, as it includes no mechanism for also

adding a carried bit.

Inputs Same

column

A B Q

0 0 0

0 1 1

1 0 1

1 1 0

Inputs Carry

A B Q

0 0 0

0 1 0

1 0 0

1 1 1

 A

 B

? ?

Table 1

Table 2

 EEE 324 - DIGITAL DESIGN

 3

To create a full adder circuit to, say add two 2 bit binary numbers, we need to

consider what may happen when we add the second column. The following are all

possibilities, which must be allowed for:

We may have to add into the second column a figure that has been carried from

the first column.

We may have to carry a figure into the third column because both bits in the

second column are 1.

We may have to carry a figure into the third column because even though only

one of the bits in the second column is 1 we have also carried a 1 from the first

column.

To deal with all these possibilities requires considerably more logic gates.

The full adder circuit to add together 2 two bit binary numbers according to

 2 1 2 1 3 2 1 A A B B C C C

PRELIMINARY

Implement the Boolean function DCBADCBADBCADCBAF with XOR

and AND gates

EXPERIMENTAL PROCEDURE

1) Connect the circuit of the half adder circuit

2) Connect the circuit of the full adder circuit

Equipment List

1) 74LS32 TTL OR GATE IC

2) 74LS08 TTL AND GATE IC

3) 74LS86 TTL XOR GATE IC

4) Standard set equipment

 1

EXPERIMENT 4

DESIGNING 2-BIT MULTIPLIER CIRCUITS

1. OBJECTIVE

To gain experience in combinational logic circuits. Circuits with both single and

multiple outputs will be used.

2. THEORY

There are numerous practical applications of combinational logic circuits. Circuits can

be easily designed and built to control outputs for various input combinations or to

perform some mathematical or logical function.

Some circuits can be easily designed by directly writing a logical expression to solve the

problem. As an example, suppose that we desired to design a circuit to turn on a light

using either of two switches. If either switch is up, the light will be lit. If both switches

are up or both switches are down, the light will not be lit. If we call the output OUT and

the inputs from the switches IN1 and IN2, we can fairly easily reason that

 1• 2 1• 2 1 2OUT IN IN IN IN IN IN

As problems become more complex, a simple design procedure can be used as is listed

below.

Combinational Logic Design Procedure

1. State the problem

2. Determine the required inputs and outputs

3. Assign variables to each input and output

4. Derive a truth table

5. Simplify output expressions

6. Implement each expression

Example: Design a circuit with 4 inputs that has outputs with a binary value equal to

the number of inputs that are HIGH. Following the Combinational Logic Design

procedure above:

1. State the problem: Specified with the example in this case

2. Determine the required number of inputs and outputs: 4 inputs are specified. If all

4 inputs are HIGH, the output code will be (100)2, so 3 output bits are required.

3. Assign variables to each input and output: Call the 4 inputs A, B, C, and D. Call

the 3 outputs E, F, and G

 2

4. Truth table:

Inputs Outputs

A B C D E F G

0 0 0 0 0 0 0

0 0 0 1 0 0 1

0 0 1 0 0 0 1

0 0 1 1 0 1 0

0 1 0 0 0 0 1

0 1 0 1 0 1 0

0 1 1 0 0 1 0

0 1 1 1 0 1 1

1 0 0 0 0 0 1

1 0 0 1 0 1 0

1 0 1 0 0 1 0

1 0 1 1 0 1 1

1 1 0 0 0 1 0

1 1 0 1 0 1 1

1 1 1 0 0 1 1

1 1 1 1 1 0 0

5. Simplify output expressions: K-maps for each output are shown below.

1

AB
CD

 00 01 11 10

00

11

10

01 1 1

1 1 1

1 1 1

AB
CD

 00 01 11 10

00

11

10

01

1 1 1

1

1 1

1

AB
CD

 00 01 11 10

00

11

10

01 1

1

1

 E = ABCD

 F = A’CD + A’BD + A’BC + ABC’ + ACD’ + AB’D

 G = A B C D

6. Implement each expression: (not shown).

Table-1: Truth Table for given function

 3

Minimization of Multiple Output Circuits

Minimization problems for circuits with single outputs are relatively

straightforward, however, circuits with multiple outputs are more difficult to

minimize. The difficulty in minimizing multiple output circuits results from the

fact that simply minimizing the output expression for each of the outputs does not

always produce the minimal complete circuit. Since product terms generated as a

part of one output can be shared by another output, the use of non-minimal

product terms can sometimes result in more shared gates and thus results in fewer

gates for the complete circuit.

Example:
Suppose that a certain circuit has 4 inputs (A, B, C, D) and 3 outputs (F1, F2, F3)

where the outputs are defined as:

 F1 = Σ(3, 5, 6,7, 11, 13,14,15)

 F2 = Σ(0, 4, 5,6, 8, 12, 13,14)

 F3 = Σ(0, 1,2,3, 5, 6, 8,9,10,11, 13,14)

If these 3 outputs were minimized separately into SOP form, the K-maps and

output expressions would be:

1 1 1

1 1 1

1

AB
CD

 00 01 11 10

00

11

10

01

1 1

1 1

1 1 1

AB
CD

 00 01 11 10

00

11

10

01 1

1

1 1 1

1 1

1 1

1 1 1

AB
CD

 00 01 11 10

00

11

10

01

1

1

 F1 = CD + BD + BC F2 = C’D’ + BC’ + BD’ F3 = B’ + C’D + CD’

 Implementing these three functions would require 11 gates (not counting inverters)

as shown in figure 1.

 4

D
C

F1
D
B

C
B

D'
C'

C'
B

D'
B

D
C'

D'
C

F2

F3

B'

3. Preliminary Work

Design a combinational logic circuit with multiple outputs that will serve as a 2-bit

multiplier. As illustrated below, the circuit will multiply the 2-bit input (A1 and A0) by

the other 2-bit input (B1 and B0). Since the largest value for each input is (11)2 = (3)10 ,

the largest possible output is decimal (9)10 or (1001)2 .

Thus the output requires 4 bits: F3, F2, F1, and F0.

(MSB) A1 2-bit

Multiplier

Circuit

A0

(MSB) B1
B0

F3 (MSB)
F2
F1
F0

A1 A0
 x B1 B0
F3 F2 F1 F0

Determine a minimal design for the circuit described above. Implement the circuit

using only AND, OR, NOT, NAND, NOR, and XOR gates. Your grade will be based to

some extent on the number of gates used. The fewer the gates, the better the grade!

Display the output using four LEDs. Generate full circuit documentation for the

circuit.

Figure-1 Logic circuit

 5

4. Experimental procedure

Construct the circuit designed in step 1 of the Preliminary Work according to

the wire table generated. Note any changes. Test the circuit for all possible input

switch combinations and record the results in a truth table.

Equipment List:

1) Various TTL family ICs (depends on design)

 EEE 324 – DIGITAL DESIGN

 1

EXPERIMENT 5

DECODERS AND MULTIPLEXERS

 1. Objective

 The objective of this laboratory is to investigate the use of decoders and multiplexers

to implement combinational logic circuits.

 2. Theory

2.1 Decoders

A decoder is a combinational logic circuit that activates one of several output lines

based on the input code (typically binary or BCD). Shown below in Figure 1 is a

block diagram and a truth table for a 2-line-to-4-line (or 2 x 4) decoder that has

active-HIGH inputs and outputs.

2 x 4
Decoder

(MSB) A

B

D0

D1

D2

D3

0

Inputs Outputs

A B D0 D1 D2 D3

0

1

1

0

1

0

1

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

Figure 1. 2 x 4 decoder with active-HIGH inputs and outputs

Note that functionally the outputs of the decoder above correspond to minterms.

For example,

D0 = m = A B C D0 . A combinational logic function that is expressed as a

sum of minterms, therefore, can be implemented by summing decoder outputs.

For example, if f(A,B) = (0, 2, 3) then f (A,B)= D0 + D2 + D3 so f can be

implemented by the circuit shown in Figure 2.

2 x 4
Decoder

(MSB) A

B

D0

D1

D2

D3

f(A,B)

Figure 2. f(A,B) = (0,2,3) implement using a 2 x 4 decoder

 EEE 324 – DIGITAL DESIGN

 2

Some decoders, such as the 74LS155, have active-LOW outputs. Figure 3 shows a

block diagram and a truth table for a 2 x 4 decoder with active-LOW outputs.

2 x 4
Decoder

(MSB) A

B

D0

D1

D2

D3

0

Inputs Outputs

A B D0 D1 D2 D3

0

1

1

0

1

0

1

0

1

1

1

1

0

1

1

1

1

0

1

1

1

1

0

Figure 3. 2 x 4 decoder with active-LOW inputs and outputs

Note that functionally the outputs of the decoder above correspond to maxterms.

For example,

D0 = m = M = A B C D = (A + B + C + D)0 0 . A combinational logic

function that is expressed as a product of maxterms, therefore, can be implemented by

ANDing decoder outputs. For example, if f(A,B) = (0, 1, 3) then f (A,B)= D0 D1

 D3 so f can be implemented by the circuit shown in Figure 4.

2 x 4
Decoder

(MSB) A

B

D0

D1

D2

D3

f(A,B)

Figure 4. f(A,B) = (0,1,3) implement using a 2 x 4 decoder

2.2 Multiplexers

A multiplexer, or data selector, can be also be used to implement combinational logic

circuits. A multiplexer implementation table is used to determine the input

connections for the multiplexer.

A 2 x 1 multiplexer can be used to implement a function of 2 variables, such as f(A,B)

A 4 x 1 multiplexer can be used to implement a function of 3 variables, such as

f(A,B,C)

A 8 x 1 multiplexer can be used to implement a function of 4 variables, such as

f(A,B,C,D)

 EEE 324 – DIGITAL DESIGN

 3

Example: Implement the function f(A,B,C) = (0, 3, 5, 7) using a 4 x 1 multiplexer.

The multiplexer implementation table is shown below in Figure 5.

0
A'

(B'C') (B'C) (BC') (BC)

A

1 2 3

4 5 6 7

I 0 I 1 I 2 I 3

A' 0 A 1
Figure 5. Multiplexer implementation table for f(A,B,C) = (0,3,6,7)

Note that each minterm in f(A,B,C) is circled in the table. Connections for each input

are determined as follows:

If no minterms are circled in a column, a logical 0 is connected to the input (Ex: I1 = 0)

If the only one minterm is circled in a column, the input is equal to the variable shown

to the left (Ex: I0 = A’ and I2 = A)

If both minterms are circled in a column, a logical 1 is connected to the input

(Ex: I3 = 1)

The circuit can be implemented as shown in Figure 6.

I 0

I 1

I 2

I 3

4 x 1
 mux Y

0

1

f(A,B,C)

S1 S0

B
C

(MSB) A

Figure 6. f(A,B,C) = (0,3,6,7) implement using a 4 x 1 multiplexer

 EEE 324 – DIGITAL DESIGN

 4

 Keep in mind in the example above that bit A was the MSB. If another bit is the

MSB, if the select lines are reversed, or if any bit except the MSB is connected to the

inputs, then the multiplexer implementation table and the circuit will change.

 For example, if the same function used above is implemented with input C connected

to the inputs and inputs A and B to the select lines, then the multiplexer

implementation table and the circuit will appear as shown below in Figure 7.

0
C'

(A'B') (A'B) (AB') (AB)

C

2 4 6

1 3 5 7

I 0 I 1 I 2 I 3

C' 0C 1

I 0

I 1

I 2

I 3

4 x 1
 mux Y

0

1

f(A,B,C)

S1 S0

B
C

(MSB) A

Figure 7. Alternate multiplexer implementation table and circuit

 3. Preliminary Work

Draw the multiplexer implementation table for each circuit below and determine the

output function f(A,B,C) in sum of minterms form.

I 0

I 1

I 2

I 3

4 x 1
 mux Y

0

1

f(A,B,C)

S1 S0

B
C

A

I 0

I 1

I 2

I 3

4 x 1
 mux Y

0

1

f(A,B,C)

S1 S0

C
B

A

I 0

I 1

I 2

I 3

4 x 1
 mux Y

0

1

f(A,B,C)

S1 S0

A
C

B

Circuit 1 Circuit 2 Circuit 3

I 0

I 1

I 2

I 3

4 x 1
 mux Y

0

1

f(A,B,C)

S1 S0

C
A

B

I 0

I 1

I 2

I 3

4 x 1
 mux Y

0

1

f(A,B,C)

S1 S0

A
B

C

I 0

I 1

I 2

I 3

4 x 1
 mux Y

0

1

f(A,B,C)

S1 S0

B
A

C

Circuit 4 Circuit 5 Circuit 6

 EEE 324 – DIGITAL DESIGN

 5

 4. Experimental Procedure

Implement)15,14,9,6,5,3,1(),,,(DCBAF function with 8-to-1 data

selector/multiplexer as shown in Figure 9. Demonstrate proper operation of the circuit

to the instructor.

F

0I

4I

3I

2I

1I

5I

6I

7I

B C D

0S 1S 2S

Equipment List

1) Breadboard

2) 5V Power Supply

3) Wire, switches, etc.

4) 74151 8 x 1 Data Selector (multiplexer)

5) 74155 Dual 2 x 4 Decoder/Demultiplexer

6) Assorted AND, OR, NAND, NOR, XOR, and INVERTER IC’s

EEE 324 – DIGITAL DESIGN

 1

EXPERIMENT 6

FLIP FLOPS

1. Objective

The objective of this laboratory is to introduce the student to the use of bistable

multivibrators (flip-flops), monostable multivibrators (one-shots), and astable multivibrators

(Clock-generators). Switch debouncing is also investigated.

2. Theory

2.1 Multivibrators
A multivibrator is a circuit whose output oscillates between logic HIGH and LOW states,

either automatically or due to some input. There are three types of multivibrators:

1) Bistable multivibrators (flip-flops) - These devices have two stable states (Q = 0

and Q = 1). They can easily be switch from one stable state to the other.

2) Monostable multivibrators (one-shots) - These devices have one stable state, but

they may enter another unstable state for a certain period of time.

3) Astable multivibrator (clock generator) - These devices oscillate between two

unstable states, forming a clock (square wave generator).

2.2 Flip-Flops
A flip-flop is the simplest type of memory cell. Its output, Q, does not depend solely upon

its inputs, but also depends on the order in which they are applied. Thus, the flip-flop is not

a combinational circuit, but is a sequential circuit. The flip-flop is the key building block of

most synchronous sequential circuits. There are four common types of flip-flops. The

symbol and truth table for each is shown below.

Q

Q

S

R

CK

S R Q(t+1)

0
0
1
1

0
1
0
1

Q(t) (no change)
0 (reset)
1 (set)
- - (illegal)

Q

Q

J

K

CK

J K Q(t+1)

0
0
1
1

0
1
0
1

Q(t) (no change)
0 (reset)
1 (set)
Q(t) (toggle)

Q

Q

D

CK

D Q(t+1)

0
1

0
1

[or Q(t+1) = D]

Q

Q

T

CK

T Q(t+1)

0
1

Q(t) (no toggle)
Q(t) (toggle)

SR flip-flop: JK flip-flop: D flip-flop: T flip-flop:

Figure 1: Four common types of flip-flops

Flip-flops are synchronous devices meaning that the output responds to the synchronous

inputs (S, R, J, K, D, or T) only on certain clock edges. There are three main types of

triggering:

1) positive-edge triggering - the output Q can only change on the positive (rising)

edge of the clock (due to the values of the synchronous inputs).

EEE 324 – DIGITAL DESIGN

 2

2) negative-edge triggering - the output Q can only change on the negative (falling)

edge of the clock (due to the values of the synchronous inputs).

3) master-slave triggering - the synchronous inputs are “read” on the positive edge

of the clock, but the output Q does not respond until the negative edge of the

clock.

The type of triggering is sometimes indicated by the symbol. Shown below in Figure

2 are JK flip-flops with all three types of triggering.

Q

Q

J

K

CK

Positive-edge triggered:

Q

Q

J

K

CK

Negative-edge triggered:

Q

Q

J

K

CK

Master-slave triggered:

C

Figure 2: JK Flip-flops with different types of triggering

Flip-flops often have asynchronous inputs available also. These inputs are not

synchronized with the clock, therefore, the output may respond immediately to

changes in these inputs. There are two types of asynchronous inputs commonly used:

1) PRESET (also called SET) - used to preset the output Q to 1

2) CLEAR (also called RESET) - used to clear the output (set Q to 0)

Asynchronous inputs are often active-LOW. Therefore, they are typically tied HIGH

for normal flip-flop operation. The PRESET or CLEAR may be momentarily set

LOW to initialize the flip-flop to some desired initial value. The symbol for a flip-flop

often show the asynchronous inputs as indicated below in Figure 3.

Q

Q

J

K

CK

Figure 3: JK Flip-flops with asynchronous PRESET and CLEAR inputs

CL

PR

EEE 324 – DIGITAL DESIGN

 3

2.3 Debounced Switches

If the input to a flip-flop or sequential circuit is applied with a switch, it is important that the

switch is debounced so that only a single transition occurs when the switch is thrown such

as is shown in Figure 4A. The contacts in a simple switch will bounce for several

milliseconds before settling down allowing several transitions to occur such as is shown in

Figure 4B. Since a negative-edge triggered flip-flop reacts to each falling edge of the input

clock, the input in Figure 4A would “clock” the flip-flop only once, whereas the input in

Figure 4B would clock the flip-flop three times.

HIGH

LOW

switch
thrown

LOW

switch
thrown

t t
LOW LOW

HIGH HIGH HIGH

Figure 4A - Debounced switch Figure 4B - Switch with contact bounce

 Figure 5 shows three circuits that can be used to debounce switches.

Q

Q

J

K

CK

Figure 5A: Debounced switch using a JK flip-flop

CL

PR
output

Figure 5B: Debounced switch using NAND gates

output

output output

7400

7400

Figure 5C: Debounced switch using inverters

output

output

EEE 324 – DIGITAL DESIGN

 4

3. Preliminary Work

Design a sequential circuit with two JK flip-flops A and B, and one input x. When x = 0 the

state of the circuit remains the same. When x = 1 the circuit goes through the state

transitions from 00 to 01 to 11 to 10 back to 00 and then repeats.

4. Experimental Procedure:

Construct the circuit you found in preliminary work.

Equipment List

Breadboard

5V Power Supply

Oscilloscope

555 Timer IC

7476 Dual JK Flip-flop

Assorted AND, OR, NAND, NOR, XOR, and INVERTER IC’s

EEE 324 – DIGITAL DESIGN

 1

EXPERIMENT 7

COUNTERS

1. OBJECTIVE

To gain experience in counters

2. THEORY

2.1 COUNTERS

Circuits for counting events are frequently used in computers and other digital systems.

Since a counter circuit must remember its past states, it has to possess memory. Flip-flops

are connected to make a counter. The number of flip-flops used and how they are

connected determine the number of states and the sequence of the states that the counter

goes through in each complete cycle.

Counters can be classified into two broad categories according to the way they are

clocked:

1. Synchronous Counters - the same clock simultaneously triggers all memory elements.

2. Asynchronous (Ripple) Counters - the first flip-flop is clocked by the external clock

pulse, and then each successive flip-flop is clocked by the Q or Q' output of the previous

flip-flop.

There are several types of counters under those two categories such as pure binary,

decade and up-down counters. In the handout, the synchronous counters will be

introduced.

Synchronous Counters

1. Binary Counters

In synchronous counters, the clock inputs of all the flip-flops are connected together and

are triggered by the input pulses. Thus, all the flip-flops change state simultaneously (in

parallel). Figure 8.1 shows a 3-bit synchronous counter using JK Flip-flop. The J and K

inputs of FF0 are connected to HIGH. FF1 has its J and K inputs connected to the output

of FF0, and the J and K inputs of FF2 are connected to the output of an AND gate that is

fed by the outputs of FF0 and FF1.

J

Q

Q

K

SET

CLR

J

Q

Q

K

SET

CLR

J

Q

Q

K

SET

CLR

FF0 FF1 FF2

Q0

Q1

Q2
High

Cp

Fig 8.1a 3 bits binary counter

EEE 324 – DIGITAL DESIGN

 2

After the 3rd clock pulse, both outputs of FF0 and FF1 are HIGH (Fig. 8.1a). The

positive edge of the 4th clock pulse will cause FF2 to change its state due to the AND

gate. Figure 8.1b shows the count sequence for the 3-bit counter.

The most important advantage of synchronous counters is that there is no cumulative

time delay because all flip-flops are triggered in parallel. Thus, the maximum operating

frequency for this counter will be significantly higher than for the corresponding

Asynchronous (Ripple) binary counter.

2. Decade Counters
Asynchronous decade counter counts from 0 to 9 and then recycles to 0 again. This is

done by forcing the 1010 state back to the 0000 state. This so called truncated sequence

can be implemented with the AND/OR logic connected as shown in Fig. 8.2.

J

Q

Q

K

SET

CLR

J

Q

Q

K

SET

CLR

J

Q

Q

K

SET

CLR

FF0 FF1 FF2

Q0

Q1

Q2
High

Cp

J

Q

Q

K

SET

CLR

FF3

Q3

Fig 8.1b 3 bits binary counter

Fig 8.2. Decade Counters

EEE 324 – DIGITAL DESIGN

 3

From the sequence, you can notice that:

 Q0 toggles on each clock pulse.

 Q1 changes on the next clock pulse each time Q0=1 and Q3=0.

 Q2 changes on the next clock pulse each time Q0=Q1=1.

 Q3 changes on the next clock pulse each time Q0=1, Q1=1 and Q2=1 (count 7),

or when Q0=1 and Q3=1 (count 9).

3. Up-Down Counters
A synchronous up-down counter also has an up-down control input. It is used to control

the direction of the counter through a certain sequence. It can be implemented with the

AND, OR & NOT logic connected as shown in Fig. 8.4

J

Q

Q

K

SET

CLR

FF0

Q0

High

Cp

J

Q

Q

K

SET

CLR

J

Q

Q

K

SET

CLR

Up/

down

Fig 8.3. Count sequence decade counter

Fig 8.4 Up-down counter

EEE 324 – DIGITAL DESIGN

 4

From the sequence, you can notice that:

 For both the UP and DOWN sequences, Q0 toggles on each clock pulse.

 For the UP sequence, Q1 changes state on the next clock pulse when Q0= 1.

 For the DOWN sequence, Q1 changes state on the next clock pulse when Q0=0.

 For the UP sequence, Q2 changes state on the next clock pulse when Q0=Q1=1.

 For the DOWN sequence, Q2 changes state on the next clock pulse when

Q0=Q1=

3. Experimental Procedure:

Build on your breadboard the decade counter

Use a switch to apply the the clock input C. Connect the outputs Q

and Q’ to two LED’s. Fill out the truth table.

Fig. 7.14: Count sequence up-down
counter

